Super-Resolved Traction Force Microscopy (STFM)
نویسندگان
چکیده
Measuring small forces is a major challenge in cell biology. Here we improve the spatial resolution and accuracy of force reconstruction of the well-established technique of traction force microscopy (TFM) using STED microscopy. The increased spatial resolution of STED-TFM (STFM) allows a greater than 5-fold higher sampling of the forces generated by the cell than conventional TFM, accessing the nano instead of the micron scale. This improvement is highlighted by computer simulations and an activating RBL cell model system.
منابع مشابه
Time-dependent traction force microscopy for cancer cells as a measure of invasiveness.
The migration of tumor cells of different degrees of invasivity is studied, on the basis of the traction forces exerted in time on soft substrates (Young modulus∼10 kPa). It is found that the outliers of the traction stresses can be an effective indicator to distinguish cancer cell lines of different invasiveness. Here, we test two different epithelial bladder cancer cell lines, one invasive (T...
متن کاملModeling crawling cell movement on soft engineered substrates.
Self-propelled motion, emerging spontaneously or in response to external cues, is a hallmark of living organisms. Systems of self-propelled synthetic particles are also relevant for multiple applications, from targeted drug delivery to the design of self-healing materials. Self-propulsion relies on the force transfer to the surrounding. While self-propelled swimming in the bulk of liquids is fa...
متن کاملPrediction of traction forces of motile cells.
When crawling on a flat substrate, living cells exert forces on it via adhesive contacts, enabling them to build up tension within their cytoskeleton and to change shape. The measurement of these forces has been made possible by traction force microscopy (TFM), a technique which has allowed us to obtain time-resolved traction force maps during cell migration. This cell 'footprint' is, however, ...
متن کاملThree-Dimensional Traction Force Microscopy: A New Tool for Quantifying Cell-Matrix Interactions
The interactions between biochemical processes and mechanical signaling play important roles during various cellular processes such as wound healing, embryogenesis, metastasis, and cell migration. While traditional traction force measurements have provided quantitative information about cell matrix interactions in two dimensions, recent studies have shown significant differences in the behavior...
متن کاملInvestigating Mechanotransduction and Mechanosensitivity in Mammalian Cells
..................................................x Acknowledgments......................................xi Statement of Originality..............................xiii List of Publications and Presentations.............xiv Chapter One: Introduction...........................................................................1 1.1 Motivation..............................................................
متن کامل